Misterioso colapso de la atmósfera superior de la Tierra
Los científicos están perplejos ante una disminución de la atmósfera superior terrestre más pronunciada de lo esperado, lo cual ocurrió durante el profundo mínimo solar de 2008–2009.
Julio 15, 2010: Investigadores, financiados por la NASA, están monitorizando un evento importante en la atmósfera de nuestro planeta. A gran altitud sobre la superficie de la Tierra, en el sitio donde la atmósfera se encuentra con el espacio, una capa de gas enrarecido, llamada "termósfera", colapsó recientemente y está ahora rebotando nuevamente.
"Esta es la contracción más pronunciada de la termósfera en, al menos, 43 años", dice John Emmert, del Laboratorio de Investigación Naval, quien es el autor principal de un artículo que anunció el hallazgo, en la edición del 19 de junio de Geophysical Research Letters (GRL o Cartas de Investigación en Geofísica, en idioma en español). "Esto constituye un récord de la Era Espacial".
Derecha: Las capas de la atmósfera superior de la Tierra. Crédito de la imagen: John Emmert/NRL. [Imagen ampliada]
El colapso ocurrió durante el profundo mínimo solar que tuvo lugar en 2008–2009 (un hecho que por sí solo no sorprende a los científicos). La termósfera siempre se enfría y se contrae cuando hay poca actividad solar. En esta ocasión, sin embargo, la magnitud del colapso fue de dos a tres veces mayor de lo que podría atribuirse a la baja actividad solar.
"Está ocurriendo algo que no entendemos", dice Emmert.
El rango de altura de la termósfera varía desde los 90 km hasta más allá de los 600 km. Es el dominio de los meteoros, de las auroras y de los satélites que pasan rozando la termósfera en su recorrido alrededor de la Tierra. También es donde la radiación solar hace el primer contacto con nuestro planeta. La termósfera intercepta los fotones del ultravioleta extremo (UVE) del Sol antes de que alcancen el suelo. Cuando la actividad solar es alta, el UVE solar calienta la termósfera, causando de ese modo que se infle como un malvavisco sostenido sobre una fogata. (Este calentamiento puede hacer que las temperaturas suban hasta los 1400 K —de allí el nombretermósfera.) Cuando la actividad solar es baja, ocurre lo opuesto.
Recientemente, la actividad solar ha sido muy baja. En 2008 y 2009, el Sol se adentró en un mínimo solar como los que ocurren solamente una vez cada siglo. Se presentaron pocas manchas solares, casi no se produjeron erupciones solares y la radiación UVE del Sol estuvo en un nivel muy bajo. Los investigadores inmediatamente dirigieron su atención a la termósfera para ver qué ocurriría. ¿Cómo se puede saber qué está ocurriendo en la termósfera?
Emmert emplea una ténica ingeniosa. Debido a que los satélites experimentan arrastre aerodinámico cuando se mueven a través de la termósfera, es posible monitorizar las condiciones que allí imperan observando el decaimiento orbital de los satélites. Él analizó las tasas de decaimiento de más de 5.000 satélites en un rango de altitudes desde los 200 hasta los 600 km y en un período de tiempo que cubre desde 1967 hasta 2010. Esto proporcionó una muestra única, en tiempo y espacio, de la densidad, de la temperatura y de la presión termosféricas, la cual abarca casi toda la Era Espacial. De esta manera, el científico descubrió que el colapso termosférico que tuvo lugar en 2008–2009 fue no solamente más pronunciado de lo que se esperaba, sino también más grande de lo que la actividad solar puede explicar.
Una explicación posible es la presencia de dióxido de carbono (CO2).
Cuando el dióxido de carbono alcanza la termósfera, funciona como un refrigerante, extrayendo calor a través de la radiación infrarroja. Bien se sabe que los niveles de CO2 de la atmósfera terrestre han aumentando recientemente. El CO2 adicional en la termósfera pudo haber incrementado el enfriamiento causado por el mínimo solar.
"Pero los cálculos no concuerdan del todo", dice Emmert. "Incluso si se toma en cuenta el CO2 usando nuestro conocimiento más avanzado acerca de cómo funciona como refrigerante, no podemos explicar completamente el colapso de la termósfera".
Según Emmert y sus colegas, el bajo nivel de UVE solar explica el 30% del colapso. El CO2 adicional explica otro 10%. Esto hace que quede hasta un 60% del tema sin explicación alguna por el momento. En el artículo publicado en GRL, los autores reconocen que la situación es un tanto complicada. Hay más en juego que meramente el UVE solar y el CO2 terrestre. Por ejemplo, las tendencias climáticas globales podrían cambiar la composición de la termósfera, alterando sus propiedades térmicas y la manera en que responde a estímulos externos. Podría suceder que la sensibilidad de la termósfera a la radiación solar esté aumentando.
"Las anomalías en la densidad", escribieron, "podrían significar que se ha alcanzado un punto crítico climatológico, aún no identificado, ligado a un balance de energía y a procesos químicos".
O quizás no.
Se podrían encontrar pistas importantes en la forma en que la termósfera rebota. El mínimo solar está ahora llegando a su fin, la radiación UVE del Sol está incrementándose y la termósfera está comenzando a hincharse de nuevo. La forma exacta en que esta recuperación ocurra podría revelar la importancia relativa de las contribuciones que provienen de fuentes solares y terrestres.
"Continuaremos monitorizando la situación", dice Emmert.
Para obtener más información, sírvase consultar: Emmert, J. T., J. L. Lean y J. M. Picone (2010), Record–low thermospheric density during the 2008 solar minimum (Densidad termosférica récord durante el mínimo solar de 2008), Geophys. Res. Lett., 37, L12102.
Un viejo explorador lunar envía sorprendentes pulsos de luz láser a la Tierra
Un robot soviético que había estado perdido durante los últimos 40 años ha sido encontrado. Los investigadores planean usar al anciano robot como ayuda para medir la órbita lunar y probar teorías de la gravedad.
Junio 3, 2010: Se ha encontrado un explorador robot soviético que había estado perdido en las polvorientas llanuras de la Luna durante los últimos 40 años, y está enviando pulsos de luz láser sorprendentemente fuertes a la Tierra.
"Enviamos pulsos láser a la posición del Lunokhod 1, y nos sorprendió la potencia de la señal reflejada", dice Tom Murphy, de la UC San Diego, quien lidera el equipo de investigación que está poniendo en funcionamiento al viejo robot nuevamente. "El Lunokhod 1 nos está hablando fuerte y claro". Aunque parezca una criatura de ciencia ficción, el Lunokhod 1 es real. Crédito de la imagen: Lavochkin Association. [Más información]
Casi olvidado en la historia de la carrera espacial que tuvo lugar durante la era de las misiones Apollo, el Lunokhod 1 fue uno de los más grandes éxitos del programa soviético de exploración lunar. En 1970, la revista Time relató el histórico alunizaje del robot:
"Tres horas después de descender a la superficie lunar a bordo de la más reciente sonda exploradora robot soviética, no tripulada, denominada Luna 17, el Lunokhod 1 (literalmente 'caminante lunar') se movió pesadamente por una de las dos rampas extendidas por su nave nodriza y avanzó… siendo éste el primer paso gigante en la exploración de otro cuerpo celeste por medio de robots".
Derecha: Una fotografía de la sonda Luna 17 tomada por el Orbitador de Reconocimiento Lunar (Lunar Reconnaissance Orbiter, en idioma inglés). Se puede ver el sendero del Lunokhod 1 alrededor de la sonda. [Más información]
El explorador a control remoto recorrió casi 10 kilómetros (7 millas) durante su expedición lunar de 11 meses. Durante ese tiempo, envió a la Tierra miles de imágenes de TV y cientos de fotografías panorámicas de la Luna en alta resolución. También tomó muestras y analizó el suelo lunar en 500 lugares diferentes.
Pero después se perdió el contacto con el Lunokhod 1 (hasta el mes pasado cuando el Orbitador de Reconocimiento Lunar, de la NASA, lo encontró de nuevo). El descubrimiento está descripto en uncomunicado de prensa anterior de la NASA.
El 22 de abril, Murphy y su equipo enviaron pulsos de luz láser desde el telescopio de 3,5 metros en el Observatorio Apache Point, en Nuevo México, dirigidos a las coordenadas proporcionadas por el Orbitador de Reconocimiento Lunar. Un retrorreflector láser, ubicado a bordo del Lunokhod 1, interceptó los pulsos y mandó una señal clara a la Tierra.
"Recibimos alrededor de 2.000 fotones del Lunokhod 1 en nuestro primer intento. Después de casi 40 años de silencio, parece que este explorador tiene mucho para decir", mencionó Murphy.
A finales de la década de 1960 y principios de la década de 1970, los astronautas del Apollo colocaron otros tres retrorreflectores en la Luna para hacer mediciones por láser de la órbita lunar. Asistidos por un cuarto retrorreflector ubicado en el Lunokhod 2, un gemelo del Lunokhod 1 que alunizó en 1973, estos espejos constituyen el único experimento científico del programa Apollo que aún funciona. Eric Silverberg, quien ahora se ha retirado de la Universidad de Texas, estuvo a cargo de las actividades de medición por láser de distancias a la Luna en el Observatorio McDonald desde 1969 hasta 1982. "Durante ese tiempo", recuerda, "medimos exitosamente las distancias a los tres retrorreflectores de esquina del Apollo y al reflector del Lunokhod 2. También intentamos medir la distancia al primer explorador lunar ruso pero tuvimos solamente una posible (aunque no definitiva) detección el 31 de diciembre de 1970. Nuestro desconocimiento de la posición del explorador y las presiones asociadas al programa Apollo propiciarion que perdiéramos el interés por el Lunokhod 1".
"Cuando leí que Tom Murphy había descubierto la señal del explorador perdido me sorprendí mucho y estuve eufórico", dice Silverberg.
La reacción inicial de Murphy fue de incredulidad: "¡La señal era tan intensa que mi primer pensamiento fue que nuestro detector estaba fallando! Esperaba que el reflector del explorador estuviera muy deteriorado y que su luz fuera ténue después de tanto tiempo, así que pensé: 'esto no puede ser el Lunokhod 1'. Pero lo era".
"Este reflector es incluso lo suficientemente poderoso como para permitirnos tomar mediciones durante el día lunar —¡la primera vez que ocurre con un experimento de este tipo!"
Silverberg continúa: "El hecho de que la reflexión de la luz por parte del Lunakohd 1 sea ahora más potente que la de su gemelo es un misterio. Esto podría darnos importantes pistas acerca de por qué todos los reflectores son ahora más débiles que durante la primera década después de su llegada a la Luna".
Con el Lunokhod 1 de regreso en el equipo, el estudio de medición de distancias por láser puede utilizarse para obtener su máxima eficiencia por primera vez.
Los científicos están usando la medición de distancias por láser con el fin de poner a dura prueba la teoría de la gravedad de Einstein "para ver si logramos fracturarla", dice Murphy.
Los prismas de esquina de cubo envían nuevamente la luz incidente hacia la misma dirección exacta desde la cual provino. "Nuestro telescopio emite un pulso láser que viaja desde la Tierra hasta la Luna y es devuelto por los reflectores. Debido a que éstos son 'reflectores de esquina de cubo', envían el pulso de regreso hacia la misma dirección desde la que provino. Recogemos tantos fotones reflejados como podemos".
El tiempo que le toma al pulso ir y venir determina la distancia que hay desde la Tierra hasta la Luna. Con mediciones repetidas, durante meses y años, los científicos pueden trazar la órbita de la Luna con precisión milimétrica.
La teoría de la gravedad de Einstein (la Teoría de la Relatividad General) sostiene que la masa y la energía de cuerpos enormes como el Sol curvan el espacio, y esta curvatura dicta cómo deben moverse los objetos alrededor del enorme cuerpo. De hecho, esta curvatura hace que la Tierra y la Luna caigan hacia el Sol.
Al medir el desplazamiento de la Luna a través del tiempo–espacio curvo, la Operación de Medición por Láser de Distancias a la Luna, del Observatorio Apache Point (APOLLO, según su sigla en idioma inglés) podría encontrar una grieta en el gran edificio de la Relatividad General. Así es como la ciencia progresa.
No comments:
Post a Comment